Ir al contenido principal

Razones trigonométricas en un triángulo rectángulo

 

representación gráfica de seno en el triángulo ABC

Seno

El seno del ángulo B es la razón entre el cateto opuesto al ángulo y la hipotenusa. Se denota por sen B.

 

fórmula de seno

 

representación gráfica de coseno en el triángulo ABC

Coseno

El coseno del ángulo B es la razón entre el cateto adyacente o contiguo al ángulo y la hipotenusa. Se denota por cos B.

 

fórmula del coseno

 

representación gráfica de tangente en el triángulo ABC

Tangente

La tangente del ángulo B es la razón entre el cateto opuesto al ángulo y el cateto adyacente al ángulo. Se denota por tan B o tg B.

 

fórmula de tangente

 

representación gráfica de cosecante en el triángulo ABC

Cosecante

La cosecante del ángulo B es la razón inversa del seno de B.

Se denota por csc B o cosec B.

 

fórmula de cosecante

 

representación gráfica de secante en el triángulo ABC

Secante

La secante del ángulo B es la razón inversa del coseno de B.

Se denota por sec B.

fórmula de secante

 

 

representación gráfica de cotangente en el triángulo ABC

Cotangente

La cotangente del ángulo B es la razón inversa de la tangente de B.

Se denota por cot B o ctg B.

fórmula de cotangente

 

SOH-CAH-TOA: Una manera sencilla de recordar

SOH-CAH-TOA es un acrónimo que se usa para poder memorizar las definiciones de las razones trigonométricas más importantes: seno, coseno y tangente. La siguiente tabla explica su significado.

 

tabla sencilla para recordar las razones trigonométricas
 

Para las otras razones trigonométricas, en vez de crear otro acrónimo, es más sencillo aprenderse el hecho de que la cosecante, secante y cotangente, son opuestos multiplicativos del seno, coseno y tangente, respectivamente. En la siguiente tabla se detalla.

 

\displaystyle \begin{matrix} \text{razon trigonometrica}& & \text{opuesto multiplicativo}\\ \\ \text{Seno}& & \text{Cosecante}\\ \text{sen } \alpha=\frac{\text{opuesto}}{\text{hipotenusa}} & & \csc \alpha = \frac{\text{hipotenusa}}{\text{opuesto}} \\ \\ \text{Coseno}& & \text{Secante}\\ \cos \alpha=\frac{\text{adyacente}}{\text{hipotenusa}} & & \sec \alpha = \frac{\text{hipotenusa}}{\text{adyacente}} \\ \\ \text{Tangente}& & \text{Cotangente}\\ \tan \alpha=\frac{\text{opuesto}}{\text{adyacente}} & & \cot \alpha = \frac{\text{adyacente}}{\text{opuesto}} \end{matrix}

Comentarios

Entradas populares de este blog

Problemas de trigonometría básica: Seno, coseno y tangente

Introducción Consideremos un triángulo rectángulo (con un ángulo recto) y un ángulo  α α : El lado opuesto al ángulo recto (el de 90º) se denomina  hipotenusa  y los otros dos lados son los  catetos : el  cateto opuesto  es el que está enfrente del ángulo  α α y el  cateto contiguo  o  adyacente  es el otro cateto, es decir, el que está en contacto con el ángulo  α α . Las razones trigonométricas se definen como la razón entre los lados del triángulo: Seno El  seno  de  α α  es el cateto opuesto entre la hipotenusa: Coseno El  coseno  de  α α  es el cateto contiguo o adyacente entre la hipotenusa: Tangente La  tangente  de  α α  es seno entre el coseno, es decir, el cateto opuesto entre el contiguo: Otra forma de escribir la tangente de  α α  es  t g ( α ) t g ( α ) . Nota:  tened en cuenta que, si cambiamos de ángulo, entonces cambian los catetos: ...

Modelos algebraicos

¿Por qué usar modelos? Los  modelos algebraicos  son una herramienta que nos ayuda a solucionar problemas cotidianos, cuando no contamos con dos datos o más. Para construir este tipo de modelos, debemos traducir el lenguaje cotidiano al lenguaje algebraico, para lo cual representamos las incógnitas con una literal; formamos una expresión, y hacemos uso de la igualdad  “ =  “ para así establecer la ecuación a resolver. En todo momento el modelo proporciona la fórmula del problema. Es una representación simplificada del mundo verdadero, incluye variables pertinentes que se pueden controlar. Por ejemplo, un  modelo de caída libre de los cuerpos  no se refiere a variables como color, textura, o la forma del cuerpo involucrado. Es así como un modelo no puede incluir todas las variables porque por medio de un número pequeño de variables pueden explicar la mayoría de los fenómenos. La mayoría de los modelos son simbólicos porque los símbolos representan las propie...

Solución Grafica de un Sistema de Ecuaciones Lineales 2x2

Consiste en graficar las rectas que conforman el sistema de ecuaciones lineales, para determinar las coordenadas ( x,y ) en donde se cortan dichas rectas. Al graficarlo se pueden presentar tres casos Caso 1 Las rectas se cortan en un solo punto. Esto significa que el sistema tiene única solución, dada por los valores  x, y  que son coordenadas del punto de corte. En la figura la solucion grafica del sistema 2x2 esta dada por  x =-1,  y =-1. Lo cual corresponde a las coordenadas del punto de corte de las dos rectas. Caso 2   El sistema no tiene solución. Las rectas son paralelas y no se cortan.   Caso 3 Infinitas soluciones. Las rectas son coincidentes por lo tanto se cortan en infinitos puntos.   Ejemplo Encontrar la solución del sistema de ecuaciones lineales dado por: Primero, se despeja la incógnita  y   quedando el sistema de ecuaciones como: El segundo paso sería determinar dos puntos que pertenezcan a cada una de las rectas. En la ...